超音速燃焼に関する 数値シミュレーション

松尾亜紀子

慶應義塾大学理工学部機械工学科

京都大学計算科学ユニット2012年度第2回研究交流会 「工学における計算科学の展開」

超音速燃焼:Detonation

- Detonation (デトネーション:爆轟波)は 燃焼波である。
- 今回の発表では、気相における燃焼波である
 「デトネーション」について話をする。
 - Detonation in Gas-phase
 - Detonation in Condensed-Phase
 - •液体、固体における爆轟波は、爆薬中の燃焼波。

燃焼形態には何がある?

- 一般に、二種類の燃焼形態がある:
 Premixed Flame ←→ Diffusion Flame
 - (予混合火炎) (拡散火炎)
 - •予混合火炎(detonation, deflagration)
 - 燃料と酸化剤は完全に混合された状態であり、
 その中を燃焼波が伝播する。
 - ・
 拡散火炎(Non-premixed flame)
 - 燃料と酸化剤は拡散により混合しながら燃焼を維持する。
 よって伝播性は無い。

Detonation vs. Deflagration デトネーション と 普通の予混合火炎

Stationary 1-Dimensional Premixed Combustion Wave

	Detonation	Deflagration
U1/C1	5-10 : Mach number	0.0001-0.003
U2/U1	0.4-0.7 (deceleration)	4-6 (acceleration)
P2/P1	13-55 (compression)	0.98 (slight expansion)
T2/T1	8-21 (heat addition)	4-16 (heat addition)
ρ2/ρ1	1.7-2.6	0.06-0.25

デトネーションの波面構造

ZND 1-D Wave Structure:

The classical C-J theory by Zel'dovich, Neumann, and Doring: strictly one-dimensional and steady relative to the detonation front

Hugoniot Curve & Rayleigh Line

- ▲ A:初期値(未燃状態)
- B: von Neumann Spike (衝撃波)
 衝撃波後方では流れ場は亜音速となり、発熱反応が起きる。
- CJ: Chapman-Jouguet Condition
 デトネーションはCJ状態で伝播する。

- B: von Neumann Spike (衝撃波)
 衝撃波後方では流れ場は亜音速となり、発熱反応が起きる。
- CJ: Chapman-Jouguet Condition
 デトネーションはCJ状態で伝播する。

Smoked foil : $2H_2+O_2+70\%$ Ar (R.A.Strehlow, 1968)

デトネーション管内部のセル模様

Smoked foil : 2H₂+O₂+70%Ar (R.A.Strehlow, 1968)

Cellular Structure of Detonation

Numerical Method for 2-D

2-Dimensional Compressible Euler equations

$$\frac{\partial \mathbf{Q}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{F}}{\partial y} = \mathbf{S}$$

$$e = \frac{P}{\gamma - 1} + \rho Q Z + \frac{\rho}{2} (u^2 + v^2) \quad \mathbf{Q} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ e \\ \rho Z \end{bmatrix}, \quad \mathbf{E} = \begin{bmatrix} \rho u \\ P + \rho u^2 \\ \rho v u \\ (e + P) u \\ \rho u Z \end{bmatrix}, \quad \mathbf{F} = \begin{bmatrix} \rho v \\ \rho u v \\ P + \rho v^2 \\ (e + P) v \\ \rho v Z \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \omega \end{bmatrix}$$

Scheme: Yee's Non-MUSCL Type Second-Order TVD Upwind Scheme

Time-integration: Point Implicit Method

Chemical Reaction Model: Arrhenius Type one-step reaction

$$\omega = -\rho KZ \exp(-Ea/T)$$

Chemical Parameter

Specific heat ratio:	γ = 1.2
Exothermicity:	Q = 50
Activation energy:	Ea = 27

Initial Condition for 2D Channel

(Q=50, γ=1.2, Ea=27)

Numerical Method for 2-D

Scheme: Yee's Non-MUSCL Type Second-Order TVD Upwind Scheme

Time-integration: Point Implicit Method

Chemical Reaction Model: Arrhenius Type one-step reaction

$$\omega = -\rho KZ \exp(-Ea/T)$$

Chemical Parameter

Specific heat ratio:	γ = 1.2
Exothermicity:	Q = 50
Activation energy:	Ea = 27

Cellular Structure of 2-D Channel

Smoked Foil Image of Simulation (Q=50, Ea=27, γ=1.2)

R. A. Strehlow (196)

Can We Use Detonation for Practical Devices?

DETONATION ENGINES

Detonation Engines

- Higher energy release rate, higher thermodynamic efficiency, and easier scaling.
- Pulse Detonation Engine (PDE):
 - Wide operating conditions (flight Mach# = 0-5).
 - Repetitive and intermittent thrust
 Fast purging and refilling are required.
- Rotating Detonation Engine (RDE)/Continuous Detonation Wave Engine (CDWE):
 - Simple configuration and higher thrust due to continuous injection.
 - Wide operating conditions without limitation of injection velocity.

Cycle of Pulse Detonation Engine

Background : Fundamental and application studies of PDE, and evolution to very high frequency PDE operation

Most recent interests are flight demonstration by rocket system, very high frequency operation, real application as RCS.

ISSI-AFRL

Rotating Detonation Engine (RDE)/ Continuous Detonation Wave Engine (CDWE)

 ・環状燃焼器内をデトネーションが連続的に伝 番するため、点火・DDTが初回のみである。

Kailasanath et al. (2011)

 ・量論混合気の水素-空気を用いたエンジンの三次 元性を検証する研究(管幅の変化)

圧力分布

- デトネーションは安定に伝播している。
- ・ 管幅が増すと、3次元性が現れる。

Japanese detonation engine researches:

University of Tsukuba, Dr. Kasahara PDE, PDRE, PDTE, RDE, Experiment, Fundamental Study		
Keio University, Dr. Matsuo	PDRE	
Fundamental Detonation Study, CFD		
JAXA (Japan Aerospace Exploration Agency), Dr. Funaki, Dr. Ko	jima feasibility	
PDE, PDRE, PDTE, Feasibility Study	study	
Hiroshima University, Dr. Endo		
PDE, PDTE, Experiment, System, Theory	DDTE	
Saitama University, Dr. Ooyagi	FDIL	
PDE, PDTE, Experiment, System		
Kyusyu Institute of Technology, Dr. Tsuboi		
PDE, RDE, CFD, System, Nozzle, Fundamental Study	RDE	
Aoyama Gakuin University, Dr. Hayashi		
PDE, RDE, CFD, System, Nozzle		
Hokkaido university, Dr. Wakita	element and fundamental study	
PDE, Experiment, Initiator		
Yokohama National University, Dr. Ishii		
PDE, Experiment, Initiator, Fundamental Study		
Tokyo Metropolitan University, Dr. Sakurai		
PDE, Experiment, Fuel-Oxidizer Mixing		