京都大学計算科学ユニット 2012年度第2回研究交流会「工学における計算科学の展開」 京都大学,京都,6/26/2012

HPCを利用した構造と都市の 地震応答シミュレーション

堀宗朗 東京大学地震研究所

a) RC橋脚

b) 配筋の様子

c) 鉄筋のモデル化. 要素寸法 は 15 ~ 7 mm程度.

都市:被害想定用

地震応答シミュレーション

◆GPGPUを使った高速ソルバの開発

◆ライフラインネットワークの解析

コンクリートの弾塑性構成則

coefficients, c and *l*, are function of elastic strain, although form is quite complicated

- 1. non-symmetric elasto-plasticity tensor
- 2. loss of positive-definiteness in increasing deformation
- 3. numerical differentiation in computing elasto-plasticity tensor

再定式化と新しいアルゴリズム

$$\begin{cases} d\epsilon^{P} - \ell \, d\lambda \, \nabla g(\cdots) = 0 \\ df(d\lambda, \cdots) = 0 \end{cases}$$

- same form as non-associated flow rule
- functions, g and f, are function of elastic strain, which can be explicitly determined

simpler expression of elasto-plasticity tensor

use of overlooked relation that corresponds to consistency condition affine form with symmetry and positive-definiteness elasticity tensor

DUAL DOMAIN DECOMPOSITION

Voronoi blocks for function

Delaunay triangles for derivative

SUMMARY

 Use of different sets of basis functions for function and derivative

$$f(\mathbf{x}) : f^{d}(\mathbf{x}) = \sum_{\alpha} f^{\alpha} \varphi^{\alpha}(\mathbf{x})$$
$$f_{,i}(\mathbf{x}) : g_{i}^{d}(\mathbf{x}) = \sum_{\beta} g_{i}^{\beta} \psi^{\beta}(\mathbf{x})$$

Optimal pair of basis function sets

- function Voronoi tessellation (quasi-Voronoi tessellation)
- derivative Delaunay tessellation

For any pair of basis function sets, coefficients are uniquely determined by minimizing a discretization error. There is an *optimum* pair that minimizes an error between discretized function and integration of discretized derivative.

COMPARISON

basis functions are elementwisely smooth functions

discretized function is discontinuous across Voronoi boundary

J-INTEGRAL

The accuracy of crack tip stress computed by PDS-FEM is at almost the same level as that of FEM, regardless of approximate failure treatment. The accuracy can be improved by including rotational DOF.

EXTENSION OF PDS

Consistency of discretization scheme

Local Taylor series expansion at Voronoi mother point

- 1st -order polynomials can be included in basis function
- numerical connection of neighboring TSE's using Delaunay domain in which their derivatives are matched

DETAILED MODELING

DETAILED MODELING

a) steel bar embedded in pier

b) surface covered by rectangular elements of 15 x 7.4 mm

TENATIVE RESULTS

b) connecting part

c) cross section at connecting part

TENATIVE RESULTS

a) surface

b) stress distribution inside of column

FEMの 高速化

◆ 有限要素法の計算 ● 前処理

- ソルバ 連立一次方程式
- 後処理

◆ソルバの高速化

- 計算機の性能を十分に発揮させるための解 析コードの最適化
- 高度な前処理により問題の収束性を改善する
- 行列ベクトル積演算などの計算負荷の高い 演算を高速化する

		_	
Α	X	=	b

高速化1:解析コードの最適化

◆改良前の解析コード

● 並列化済み:計算コア12個、8倍の高速化

	並列化時の高速化率を下げる 箇所 逐次処理が必要な箇所 競合メモリアクセスが発生する 箇所
計算コア1 計算コア2 計算コア3	各計算コアが担当する領域を 設定競合メモリアクセスの回 数を低減

高速化2:可変前処理

メモリ使用量を抑えるため,連立一次方程式の解法には反復法 を使用

 Ax = b
 前処理により連立一次方程式の収束性を改善、必

 要な反復回数を少なくする

MAx = Mb 前処理の性能が落ちない範囲で前処理行列Mを粗 くして計算コストを低減

$M^{C}Ax = M^{C}b$

- A 係数マトリクス M 前処理マトリクス
- x 解ベクトル M^c 可変前処理マトリクス

首都高速道路株式会社・鹿島建設株式会社・東京大学地 震研究所の共同研究で作成された解析モデルを使用

要素数	1673489
節点数	2456212
自由度数	7368636
時間ステップ	4096

◆目的

主要応答の11ステップの計算時間の比較により, 各改良がどの程度,性能向上に寄与したかを定 量的に検証

- Ver.1 改良前の解析コード(OpenMP並列化, 12コア使用)
- Ver. 2 Ver. 1の並列効率を改善したもの
- Ver.3 Ver.2に可変前処理を導入したもの
- Ver.4 Ver.3に精度混合演算を導入したもの
- Ver.5 Ver.4にGPU計算を導入したもの
- Ver.6 Ver.5のGPU間データ転送量を低減したもの

数値実験の結果

Ver. 1

改良前の解析コード

OVERVIEW OF IES

action simulation

SYSTEM OF IES

DESIGN OF AGENT

class diagram

Ability MaximumSpeed Agent Visibility Ability PassingProbability Thought See(): Thought Think(): Direction Move(): Speed Path agent **\see** think

move

parameters

μ	average of agent maximum speed [m/s]
σ	SD of agent maximum speed [m/s]
R	visibility radius [m]
D	dimension of forward domain [m] (domain: <i>D</i> x2 <i>D</i>)
т	speed reduction rate in passing
θ	modification of moving angle in passing [deg]
Р	probability of making forced passing

YOKOHAMA CITY FIREWORK FESTIBAL

locus of running person

Reproduction/prediction of waking speed distribution, using image analysis of walking people captured by a video camera

2005 MIYAGI-KEN OKI EARTHQUAKE

locus of running person

male	speed [m/s]	female	speed [m/s]
A	5.9	А	3.1
В	3.3	В	3.2
С	5.9	С	4.0
D	3.0	D	4.2
E	4.5	E	2.7
F	3.0	F	3.0
G	3.9	G	2.8
Н	3.0		
		moon	4.05[m/c]

mean 4.05[m/s] SD 1.34[m/s]

IMPROVEMENT OF AGENT NAVIGATION

INTRODUCTION OF OFFICIAL AGENT

SCALABILITY OF MAS

Number of agents = 500,000

Domain partionining for load balance; a node is assigned to each zone, and special cares are taken for agents moving from one zone to another

STRONG SCALABILITY

Strong scalability in K

- with flat MPI
- Number of agents : 2,000,000
- Number of steps : 400 (80 seconds)

number of nodes	runtime /(s)	Strong scalability /(%)
512	1814.318	
1024	965.242	94.0
2048	495.2311	97.5

Strong scalability = $T \downarrow m / T \downarrow n / N \downarrow n / N \downarrow m \times 100$, where $T \downarrow m = run time with m cpus and n \ge 2m$

RUNTIME DETAILS

runtime and migration time are reduced, although repartition time remains the s

◆国際的に優位な耐震設計・被害想定技術の確立

- 断層-構造システム
 理学に頼らない工学智の確立
- データの曖昧さに対応
 モンテカルロシミュレーション
 想定外を減らす努力

- 先端的大規模計算
 耐震設計の構造物解析
 被害想定の都市モデル解析
- CADとの連成(モデル構築)
- GISとの連成(可視化)

断層-構造システム