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「計算科学が拓く世界」第5回 今日のお話
• 数値天気予報の歴史 

• データ同化 

• 大気大循環モデル 

• 台風進路予測 

• 課題

数値予報精度の向上

Shapiro et al. 2010

数値予報の歴史



数値天気予報の父たち
• V. Bjerknes (1904)  
原理的に数値天気予報は可能 

• L. F. Richardson (1922)  
手計算でやってみたが... 
→145 hPa/6hの非現実的な気圧変化 

• J. Charney, R. Fjørtoft and J. von Neuman (1950) 
ENIACを使った1日予報

数値気象予測のための必要十分条件
1.現在の大気の状態の精度のよい推定値 

2.大気の状態の時間発展を記述する精度の良い方程式系

Bjerknes 1904

Richardsonの実験
• 鉛直に積分した浅水モデルでの理想実験 

• 傾圧モデルでの気圧変化傾向の試算 

• 145 hPa/6hの非現実的な気圧変化 

• 将来高速な計算が可能になれば実現しうる夢
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予報工場

NOAA/L. Bengtsson

ENIAC: Electronic Numerical Integrator and 
Computer

• 世界最初の汎用電子計算機（1946年） 

• John Mauchly とPresper Eckertが設計 

• Mauchlyは計算で天気予報をしたいと考え、 
コンピュータに興味を持った 

• cf. Colossus: 英国でMax Herman Alexander Newmanが
考案し，Thomas HaroldFlowersが製作。 
ドイツの暗号解読に利用

Lynch and Lynch 2008 

ENIACによる世界初の数値天気予報

Lynch and Lynch 2008 

MATLABによる再現



Lynch and Lynch 2008 

PHONIAC

データ同化

データ同化とは
• 数値天気予報に必要な初期値を作る。 

• 予測と観測との重み付き平均。
地上

高層 飛行機

船舶・ブイ
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品質管理
• データが信頼できるか確認。 

• 可能なものは修正。 

• 気候値や予報値から大きく外れていないか。 

• 航路から外れていないか。

データ同化

Kalnay  2003

統計的推定
• 2つの気温の測定値 

• 誤差に関する仮定: バイアスなし，分散は既知，無相関 

• 平均二乗誤差を最小化

データ同化の原理Kalman Filter basics T. Enomoto

データ同化の原理

• 精度の良いデータに重く，悪いデータに軽く重みをつけて平均する。
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• 予報を観測で修正する。（1: 予測xf, 誤差η，2: 観測y, 誤差ε）
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観測演算子
• 観測と予測とを比較する。 

• 観測の場所に内挿。 

• モデルの変数から観測の変数を作る。

様々なデータ同化手法
• 最適内挿法: 最小二乗法に基づく。 

• 3次元変分法: 最尤法に基づく。  
非線型の観測演算子を利用可。 

• 4次元変分法: 時刻の異なるデータを利用可。 

• アンサンブル・カルマンフィルタ: 
日々変動する予報誤差が得られる。

大気大循環モデル

数値モデルとは
• 物理法則を 
プログラムで表現 

• 離散化 

• パラメタ化



物理法則
• 運動方程式 

• 熱力学の式 

• 連続の式

Description of AFES 2: improvements for high-resolution and coupled simulations 3

and humidity in GPV are interpolated spectrally in the horizontal and linearly in the
vertical.

This article is aimed at describing modifications made after the T1279L96 experi-
ments reported by Ohfuchi et al. (2004). AFES 2 is the new version with those mod-
ifications. Section 2 describes modifications to dynamical processes. Descriptions of
recently introduced physical schemes follow in Section 3. Concluding remarks are
found in Section 4.

2 Dynamical processes

2.1 Formulation

The mathematical formulation of the dynamical core is briefly reviewed here.
AFES is a spectral, Eulerian and primitive-equation AGCM based on CCSR/NIES

AGCM 5.4.02 (Numaguti et al. 1997). It was rewritten to run most efficiently on the
Earth Simulator (Shingu et al. 2002, 2003). Its dynamical framework basically follows
that of Hoskins and Simmons (1975). The vertical coordinates are in σ = p/ps, where
p and ps are the pressure and surface pressure, respectively. The vertical finite differ-
ence scheme by Arakawa and Suarez (1983) is adopted for a better representation of
the hydrostatic equation, the pressure gradient force and the conservation of energy
and potential temperature. The leap-frog scheme with the Robert-Asselin filter and
semi-implicit scheme are used to integrate forward in time.

The prognostic equations for the vorticity (ζ), divergence (δ) and temperature (T ),
specific humidity (q) and surface pressure (ps) are as follows:
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where λ is the longitude, φ the latitude µ = sin(φ), t time, a the planet radius, u, v the
eastward and northward winds, U = u cos(φ), V = v cos(φ), Nu and Nv the nonlinear
terms, D(ζ),D(δ),D(T ′),D(q) the horizontal dissipation, E the kinetic energy, Φ the
geopotential, T0(σ) the reference temperature, T ′=T − T0, R the gas constant for
dry air, cp the specific heat at constant pressure, Tv the virtual temperature, Qdiff the
heating from horizontal mechanical dissipation. The kinetic energy is written as

格子系

but still very valuable, GARP Publications Se-
ries No 17 (Mesinger and Arakawa 1976; Kasa-
hara 1979) on Numerical Methods Used in
Atmospheric Models. For a summary of numer-
ical methods that have been used for global
models and additional references see William-
son (1992) and Williamson and Laprise (2000).
An excellent book by Durran (1999) covers the
fundamentals of numerical methods for atmo-
spheric problems and fluid flow in general.
More recent reviews on specific types of
schemes include Machenhauer et al. (2007) on
finite-volume methods and other contributions
to that volume.

This paper concentrates on the adaptations
to spherical geometry, the pole problem, rather
than the details of numerical methods. This
primarily involves the horizontal aspects of the
schemes and we do not discuss the vertical as-
pects although they are of course very impor-
tant. We cannot go into all details but try to
point the reader toward current research direc-
tions that they might follow if interested.

2. History of the pole problem

2.1 Early developments
The earliest atmospheric models were grid

point, finite difference based. The thrust in at-
mospheric modeling was in basic numerical ap-
proximations for nonlinear fluid flow and dealt
with issues such as accuracy, efficiency, conser-
vation, and nonlinear instability. The earliest
models involved transforming the equations to
a map projection over a limited region of the
sphere. Cartesian coordinates were then ap-
plied on the map projections. Applying these
approaches which were developed for Cartesian
coordinates on map projections to the entire
sphere introduced an additional set of difficul-
ties. Almost all the approaches applied to the
sphere in the early days with varying degrees
of success, have been resurrected in recent
times and remain foci of current developments.
Williamson (1979, 1992) provide extensive
references and more details of these early de-
velopments than can be included here. Several
of these early approaches which did not reach
fruition then are now looking promising with
recent work which combines them with more
modern numerical methods.

Spherical curvilinear coordinates (latitude
and longitude) present the most obvious coordi-

nate system for the surface of the sphere. The
most natural grid for spherical coordinates is
equally spaced lines of constant latitude and
longitude and therein lies the problem. Figure
1 illustrates such a grid. The meridians conver-
gence approaching the pole making the longi-
tudinal grid interval (measured in distance
rather than degrees) approach zero at the pole,
and the coordinate system becomes singular
there. This convergence and singularity led to
the term pole problem being applied to a rather
vaguely defined problem. But this pole problem
is really one of economics rather than a funda-
mental problem. The singularity itself can be
dealt with in a variety of ways.

The earliest numerical weather prediction
models were formulated with the equations
transformed to a map projection. Conformal
projections were chosen because they result in
greater symmetry in the equations when writ-
ten in terms of Cartesian coordinates on the
map projection. Stereographic and Mercator
projections were the most common, with do-
mains at most hemispheric. It was natural to
attempt to extend these projections to sphere,
but no single conformal projection maps the en-
tire sphere onto a finite section of the plane.
Therefore Phillips (1957) proposed combining
several projections to cover the sphere. This
approach would later be referred to as a com-
posite mesh, and more recently as overset
grids. He used two polar stereographic projec-

Fig. 1. A latitude-longitude grid consist-
ing of equally spaced lines of constant
latitude and longitude.

July 2007 D.L. WILLIAMSON 243

tions for the Northern and Southern hemi-
spheres, and a Mercator projection for the
equatorial band, and applied second-order fi-
nite differences to uniform grids on each projec-
tion. Values needed for the approximations at
points not included in the computational grid
of one projection were obtained by interpolation
within the grid of another projection. Figure 2
shows a composite grid consisting of a North
Polar and a South Polar stereographic grid
projected back to the surface of the sphere to
illustrate the overlap. Note, this grid does not
include the equatorial Mercator projection
included by Phillips (1957). Although Phillips
(1962) showed that with careful definition of
the finite-difference scheme and interpolation
procedures the composite mesh approach could
give good results, his approach never gained
popularity. Conservation aspects of composite
meshes were revisited by Stoker and Isaacson
(1975) with the addition of a conserving tech-
nique for the interpolations (Bayliss and Isaac-
son 1975; Sasaki 1976). Again composite
meshes were not adopted for a complete baro-
clinic model, perhaps because of lingering con-
cerns about conservation and noise on the part
of practitioners of that time given the very
large investment needed to develop a complete
baroclinic model.

Sadourny (1972) developed a method to cover
the sphere with several non-conformal projec-
tions which required no interpolations between
meshes. It is based on a regular polyhedron cir-
cumscribed to the sphere. A coordinate system
is derived for each face for a gnomonic or cen-
tral projection. He tested this approach with a
cube for the polyhedron in which case the sides
of the polyhedral faces are coordinate lines and
grid points are common to the two sides defin-
ing the edge. Such a system is illustrated in
Fig. 3. Finite differences were developed at the
boundaries from flux or conservation considera-
tions so no interpolations were necessary to ob-
tain information from adjacent faces. He en-
countered a diffculty with two-grid interval
noise arising from the boundaries where it is
difficult to maintain the accuracy of the interior
scheme.

As mentioned above, the pole problem with
spherical coordinates is primarily and economic
one, not a technical problem. Explicit finite dif-
ference schemes have a restriction on the time
step related to the wind speed and the grid in-
terval. Essentially the time step must be small
enough that the advection or wave propagation
remains within the grid stencil used by the fi-
nite differences. The relation between the wind
speed, grid length and time step is referred to
as the Courant-Fredrich-Levy or CFL condi-
tion, after the mathematicians who first de-

Fig. 2. A composite or overset grid con-
sisting of uniform grids on a North
Polar and a South Polar stereographic
projection. The meshes on the projec-
tions are mapped back to the surface of
the sphere to illustrate the overlap.

Fig. 3. A ‘‘cubed sphere’’ grid obtained by
projecting a Cartesian coordinate sys-
tem on each face of a cube onto the sur-
face of the sphere.
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scribed it. Thus as the longitudinal grid in-
terval goes to zero approaching the poles the
time step must go to zero since the wind does
not go to zero. Use of such a small time step
makes a method extremely expensive. In order
to make schemes based on latitude-longitude
grids applied to spherical coordinates econom-
ical, two early attempts were to (1) shorten the
time steps near the poles to satisfy longitudinal
CFL restrictions arising from the decreasing
longitudinal grid distance (Grimmer and Shaw
1967) and (2) to lengthen the longitudinal grid
intervals over which the finite differences are
taken near the poles again to create a less re-
strictive CFL condition (Gates and Regal 1962;
Kurihara 1965). While the first approach gave
satisfactory results, it still had an economic dis-
advantage in that more than half the computer
time was spent integrating the two rows next to
the pole which comprised only 2 percent of the
earth’s area. The grids resulting from the sec-
ond approach were originally referred to as
Kurihara grids, but more recently have been re-
ferred to as reduced grids. One is illustrated in
Fig. 4. Such grids were tried by a number of in-
vestigators and resulted in differential phase
errors which produced artificial meridional tilts
to waves and spurious meridional transports.
Shuman (1970) and Williamson and Browning
(1973) showed that errors from the curvilinear-

ity of the coordinate system are largest near
the polar singularities, and arise from the vari-
ation in the unit vectors. For uniform accuracy
in approximations dealing with vector compo-
nents, points should be added in longitude near
the poles, not subtracted, thus making the eco-
nomic problem even worse. This is not an issue
with scalar variables.

Uniform latitude-longitude grids were made
economical by applying a spatial filter near the
poles in longitude to remove the fastest moving,
computationally unstable waves, which fortu-
nately are also the shortest waves (Umscheid
and Sankar-Rao 1971). This is a rather unsatis-
fying, engineering approach but still in use
today for example in the optional finite volume
core of the Community Atmosphere Model
(CAM) (Lin 1997; Collins et al. 2004). Purser
(1988) has shown that errors introduced by
such filtering may be significant and that near
the pole some additional information in lati-
tude should be used to reduce them.

In the mid 1960s, Buckminster Fuller’s geo-
desic domes (e.g., McHale 1962) inspired spher-
ical grids which were constructed by covering
the sphere with nearly uniform triangles. Such
grids, illustrated in Fig. 5, are referred to as
spherical geodesic or icosahedral. Sadourny
et al. (1968) and Williamson (1968) obtained
very good solutions of the barotropic vorticity
equation for a test with a Rossby-Haurwitz
wave, an exact solution to the equations. The
Rossby wave showed none of the distortion
that was seen in the reduced grid approaches
described above. Additional tests with the baro-
tropic primitive (shallow water) equations were
also successful, however solutions with higher
order schemes exhibited noise (Williamson
1971). Cullen (1974) integrated the shallow
water equations on an icosahedral grid using fi-
nite element methods. His results were better
than those obtained with second-order finite
differences on a latitude-longitude grid with
four times the number of grid points but his
method was not pursued further.

2.2 Dominance of spectral transform
In the mid to late 1970s further development

of grid-point schemes for spherical geometry
was stifled by the success of the spectral trans-
form method. Although grid-point models con-
tinued to be used, the level of research and

Fig. 4. A Kurihara or reduced grid in
which the longitudinal grid interval
measured in degrees is increased ap-
proaching the poles to keep the physical
length as uniform as possible.
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development into explicit grid-point approxi-
mations dropped dramatically. Spectral trans-
form became the method of choice for both
NWP and climate models and dominated the
field, although they were not universally
adopted and a few notable examples of grid-
point models continued to be applied.

The introduction of the spectral transform
method by Eliasen et al. (1970) and Orszag
(1970) made the spectral method cost effective.
The spectral transform method represents
fields by a series of spherical harmonics. Linear
terms are calculated directly in spectral space
while nonlinear terms are calculated from grid
point values obtained by synthesizing the field
from the spectral coefficients. The results of
the nonlinear calculations are transformed
back to spectral space. Machenhaur (1979) pro-
vides an excellent review of the method.

The spectral transform method calculates
linear advection of a resolved field exactly ex-
cept for time truncation, so there is no compu-
tational dispersion. With triangular spectral

truncation it presents a natural filter for spher-
ical geometry by providing an isotropic repre-
sentation in spectral space even though the
computationally adopted underlying Gaussian
grid does not. Since it is based on an isotropic
representation, short longitudinal structures
near the pole are not present and therefore do
not restrict the time step. Application of a qua-
dratic unaliased transform grid provides a nat-
ural way to eliminate aliasing of quadratic
terms and thus makes the method immune to
nonlinear instability, although that problem
had also been solved in grid point models by
Arakawa (1966) type differences. Unlike grid-
point schemes, the spectral transform method
does not have a number of arbitrary parame-
ters to define it and its application to global
atmospheric models became amazingly stan-
dard following Bourke’s (1974) implementation.
More recently Swarztrauber (1996) compared
the accuracy of nine spectral transform meth-
ods for solving the shallow water equations.
They vary by being based on the shallow water
equations written in different forms. Eight of
the methods compute almost identical results
with standard test cases. For practical pur-
poses the ninth is also comparable to the others.

The spectral transform method became domi-
nant at that time when the modeling issues
consisted primarily of large scale, relative
smooth dynamical motions. It provided a very
elegant solution to sphere problem. It also has
advantages at the relatively low resolution
used for climate modeling at that time: linear
advection is accurate to the truncation limit un-
like grid-point schemes which in general damp
short wave rather severely and in addition can
have significant phase errors. Of course the
spectral transform method could not properly
capture the nonlinear interactions at scales
near the truncation limit, but then no scheme
does.

To indicate the continuing popularity of the
spectral transform method until recently we
compare its use to that of grid point methods
in recent production models. The spectral
transform method is the basis of 11 out of 14 re-
cent operational global NWP systems, the re-
maining 3 are grid point based (WGNE 2005,
Appendix E). Concerning models applied to cli-
mate simulation, in AMIP I, which was carried
out from 1990 to 1996 (Gates 1995; Gates et al.

Fig. 5. A spherical geodesic or icosahe-
dral grid obtained by subdividing the
twenty triangles of an icosahedron into
smaller triangles. The twenty icosahe-
dral triangles are indicated by the
thicker solid lines. Each of these trian-
gles is divided into four smaller trian-
gles indicated by the dashed lines
combined with the thicker solid lines.
These are further divided into four tri-
angles indicated by the thiner solid
lines.
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1772 R. SWINBANK and R. J. PURSER

Figure 1. A planar ‘Fibonacci grid’, in which a disk is covered uniformly with 700 points. Every 34th and 55th
point is marked with an open circle, to highlight the spiral structure of the grid.

Figure 2. A spherical Fibonacci grid, at resolution N = 1000 (2001 grid points). As in Fig. 1, the spiral structure
is highlighted by marking every 34th and 55th grid point.

While more efficient arrangements may be attainable for a particular number of points,
these formulae are valid for an arbitrary number of points (i.e. an arbitrary range of the
index i).

The spherical Fibonacci grid (Fig. 2) is obtained by wrapping the planar grid around
a sphere in such a way as to preserve the equal-area property. The points are arranged
at different longitudes λ, in a similar manner to Eq. (1). In order to obtain an equal-area
grid on the sphere, the points are spaced evenly in sin θ , where θ is latitude (i.e. every
point is at a different latitude). By convention, we index points from −N to +N , so that

Williamson 2007 Swinbank and Purser 2006

Fibonacci grid

球面調和函数
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鉛直離散化



パラメタ化
• 格子間隔より小さな現象 

• 格子の量で表現 

• 物理的考察，観測事実に基づく経験則 

• 乱流，積雲対流，雲物理

Emanuel 1991

AFESに用いている地形

水平解像度 20 km

海面水温の例

米国海洋大気庁 RTG 海面水温



二酸化炭素 AFES

• 地球シミュレータ用 
大気大循環モデル 

• スペクトル変換法 

• 格子間隔～約10 km

Numaguti et al. 1997; Ohfuchi et al. 2004; 
Enomoto et al. 2008; Kuwano-Yoshida et al. 2011

水平解像度依存性

T39 (333 km)

T159 (83 km)

T639 (21 km)

2004/7/17 21UTC (FT=69h)

気象の予測
• 偏微分方程式をコンピュータで解く 

• 観測データを同化した初期値 

• 地形, 海面水温・海氷等の境界条件 

• 物理法則をプログラムしたモデル



台風進路予測

台風進路予測誤差

気象庁

2013年台風第3号YAGI たすき掛け実験

TIGGEALERA2

モデル

モデル

モデル

予報感度解析

初期値・モデル「たすき掛け」実験

初期値
初期値
初期値
初期値
初期値
初期値 予報値予報値予報値 予報値 予報値

予報値予報値予報値 予報値 予報値

予報値予報値予報値 予報値 予報値



T0920 (Lupit): 初期値に敏感

Yamaguchi et al. 2012

T0920: NCEP GFS T382L64

宮地 2014

T0917 (Parma): モデルが重要

Yamaguchi et al. 2012

T0917 (Parma): NCEP GFS T190L64

宮地 2014


